ParaText: Scalable Text Modeling and Analysis

Daniel M. Dunlavy
Comp. Sci. & Informatics
Sandia National Laboratories
P.O. Box 5800, M/S 1318

Timothy M. Shead
Data Analysis & Visualization
Sandia National Laboratories

P.O. Box 5800, M/S 1323

Eric T. Stanton
Data Analysis & Visualization
Sandia National Laboratories
P.O. Box 5800, M/S 1323

Albuquerque, NM 87185-1318  Albuquerque, NM 87185-1323  Albuquerque, NM 87185-1323

dmdunla@sandia.gov

ABSTRACT

Automated analysis of unstructured text documents (e.g.,
web pages, newswire articles, research publications, business
reports) is a key capability for solving important problems in
areas including decision making, risk assessment, social net-
work analysis, intelligence analysis, scholarly research and
others. However, as data sizes continue to grow in these ar-
eas, scalable processing, modeling, and semantic analysis of
text collections becomes essential. In this paper, we present
the ParaText text analysis engine, a distributed memory
software framework for processing, modeling, and analyzing
collections of unstructured text documents. Results on sev-
eral document collections using hundreds of processors are
presented to illustrate the flexibility, extensibility, and scal-
ability of the the entire process of text modeling from raw
data ingestion to application analysis.

Categories and Subject Descriptors
1.2.7 [Computing Methodologies]: Natural Language Pro-
cessing—text analysis

General Terms
Algorithms, Design, Performance, Text Analysis

1. INTRODUCTION

Automated processing, modeling, and analysis of unstruc-
tured text (news documents, web content, journal articles,
etc.) is a key task in many data analysis and decision mak-
ing applications. In many cases, documents are modeled as
term or feature vectors and latent semantic analysis (LSA)
[4] is used to model latent, or hidden, relationships between
documents and terms appearing in those documents. LSA
supplies conceptual organization and analysis of document
collections by modeling high-dimension feature vectors in
many fewer dimensions.

In this paper, we emphasize scalability of the full LSA pro-
cess from ingesting text and modeling data, to analysis tasks

tshead@sandia.gov

etstant@sandia.gov

including information retrieval and document similarity. We
have implemented several alternate methods for parts of the
process that require significant inter-processor communica-
tion, and present strong scaling studies for these methods.

2. RELATED WORK

Past work on the scalability of LSA modeling has focused
on the computation of a truncated singular value decompo-
sition (SVD) of the term-by-document matrix modeling the
data. (e.g., [2, 1, 11]). Other approaches for increasing the
computational performance of LSA include alternatives to
the SVD for dimensionality reduction (e.g., [12]) and feature
selection to reduce the size of the term-document matrices

(e.g., [14]).

Work on fully parallel text analytic systems is less common.
Berry and Martin developed the Parallel General Text Pro-
cessor (PGTP) for LSA modeling [2], but the focus of that
work was on parallelization of the SVD within a text anal-
ysis system. Krishnan et al. have developed parallel text
analysis capabilities in the IN-CITE visual analytics soft-
ware application [7], where global arrays and distributed
hashmaps are used to improve overall performance of the
system. Their work was demonstrated on up to 32 proces-
sors. The UIMA Grid project [5] is an alternate approach
that leverages grid computing to enable asynchronous par-
allel processing of text for entity extraction; results were
presented on only a few processors.

The goal of our work is to investigate the use of distributed
memory architectures for text analysis and modeling. We
describe the components of the ParaText system and demon-
strate its performance through several strong scaling studies.

3. THE PARATEXT SYSTEM

The ParaText system is comprised of a collection of text
analysis components designed to function within a Titan
data processing pipeline [13], where data sources, filters, and
sinks can be combined in arbitrary ways . The ParaText
components can be used either as a C++ programming li-
brary, or via a web service that implements a RESTful API
[6] atop an Apache httpd server. Thus, the ParaText capa-
bilities outlined in this report can be accessed using a variety
of programming languages and environments.

Throughout this paper, we denote n as the number of doc-
uments and m as the number of unique terms, and p as the
number of processors used in the computations.



3.1 Text Extraction

The first part of the pipeline consists of filters for extracting
and transforming text. With the exception of determining
which files should be processed on which processors, the fil-
ters described in this section all parallelize extremely well.

Document Ingestion. The DOCUMENT INGESTION filter is
responsible for partitioning a set of documents and loading
them into memory as a table where each row corresponds
to a document. We have implemented several partitioning
strategies that control how processors determine which files
to load locally. The Documents partitioning strategy does
a simple round-robin distribution where each process loads
1/p documents from the set. This strategy is simple to im-
plement and requires no communication, but can lead to
imbalanced loading as some processors may accumulate doc-
uments that are smaller- or larger-than-average. The Bytes
partitioning strategy tries to balance loading by assigning
files to processors so that each processor receives roughly
the same number of input bytes. Because this is a variation
on bin packing — a combinatorial NP hard problem — we
use a heuristic approach of maintaining a “bucket” for each
processor, then inserting each file, in descending order of file
size, into whichever bucket contains the fewest number of file
bytes at the time. Early versions of this approach (which we
call Thrash) did not require communication, but performed
poorly due to filesystem contention as every processor simul-
taneously tried to retrieve the size of every file in the set.
Subsequent versions use a single processor to retrieve file
sizes and distribute them to the remaining processes before
beginning the bucketing process.

Text Extraction. Once the local table of documents to be
loaded has been created, we use MIME type information to
extract text, using the TEXT EXTRACTION filter. This fil-
ter contains a collection of strategy objects, each of which
is responsible for extracting text from documents of a given
MIME type. Note that the text extraction strategies can
perform arbitrarily-complex operations to extract text from
a document, including extracting text from binary file for-
mats such as PDF or word-processing documents, extracting
metadata from images, or even performing optical character
recognition on the contents of an image. For the experiments
presented here, we relied on a default extraction strategy
that handles all text/* MIME types. The extracted text is
stored as Unicode [10] strings using UTF-8 encoding, so the
system is capable of working with mixed-language text.

Tokenization. Following text extraction, the TOKENIZATION
filter converts document text into a table of tokens. Tok-
enization is performed by splitting the document text into
tokens using delimiters specified as half-open ranges of Uni-
code codepoints. Delimiters can be kept, allowing for to-
kenization of logosyllabic scripts such as Chinese, Korean,
and Japanese by specifying ranges of logograms as “kept”
delimiters, so that individual glyphs become tokens.

Token Length Filtering. We use two instances of the TOKEN
LENGTH filter to discard tokens that are either too short or
too long. This improves the downstream analysis by reduc-
ing noise in the data models.

N-Gram Ezxtraction. The N-GRAM EXTRACTION filter con-

verts individual tokens into n-grams and is parameterized
to allow arbitrary values for n. We used unigrams (n = 1)
for all experiments in this paper.

Case Folding. We use the CASE FOLDING filter to transform
the resulting tokens to a form where they can be used in case-
insensitive comparisons. This transformation is carried-out
using the rules provided by Unicode, so the results can
be used for case-insensitive comparisons across all Unicode-
supported languages.

Token Value Filtering. To provide filtering of stop-words,
we use the TOKEN VALUE filter, which is parameterized by
a list of tokens to be discarded. We used the standard stop
word list from the SMART project [9].

3.2 Term Dictionary Creation

Once each processor determines the list of terms in its local
data (i.e., documents), the TERM DICTIONARY filter cre-
ates a global dictionary where each term is listed exactly
once. Because this process necessitates communication of
large numbers of strings between processors, we created sev-
eral different implementations for testing: in N-to-1, every
processor sends its local terms to processor 0, which creates
the global dictionary and broadcasts the results back to ev-
ery processor. For N-to-N, each processor broadcasts its
local terms to all other processors, which then create their
own copies of the global dictionary. In the Binary Tree ap-
proach, each processor sends its local terms to a “neighbor”,
which consolidates them with its own local terms, sending
the results to a “super neighbor”, and-so-on until the com-
plete global dictionary has been created on one process that
broadcasts the results to the others. The Round Robin ap-
proach involves processor k sending its local terms to proces-
sor (k+1) mod p, where they are consolidated with the local
terms. This process runs p times, so that every term eventu-
ally reaches every processor. Finally, we have a MapReduce
approach that uses the MapReduce-MPI library [8] to con-
solidate and distribute terms.

3.3 Term Document Matrix Creation

Given the list of local terms and the global term dictio-
nary computed in the TERM DICTIONARY filter, each pro-
cessor uses the TERM DOCUMENT MATRIX filter to create
its portion of a sparse, distributed term-document frequency
matrix (no inter-processor communication is required). For
each term from the local term list, the global term dictio-
nary is used to determine the corresponding matrix row.
Two methods are implemented for term dictionary lookup:
Global lookup is a naive approach where the global term
dictionary is used to lookup each term with O(mlogm) per-
formance; Global+Local lookup is a more sophisticated two-
stage approach where local lookup results are cached in a
smaller lookup table to improve performance.

3.4 Term Weighting

Once the term-document frequency matrix is generated, it
must be weighted to incorporate the importance of the terms
throughout the collection. In this paper, we focus on the
standard log-entropy weighting scheme [4] employed in many
LSA studies, which illustrates the challenges associated with
term weighting on distributed memory architectures. This



weighting scheme involves the product of local quantities
(frequencies of terms within each document) and global quan-
tities (entropies of terms across the entire document collec-
tion). In ParaText, the local and global computations are
separated into different filters: the LoG WEIGHTING and
ENTROPY WEIGHTING filters, respectively.

The entropy of term ¢ across the collection is defined as

e T

where tf;; is the frequency of term ¢ in document j and gf;
is the global frequency of term ¢ across the collection. Inter-
processor communication is required both in computing g f;
for each term and the sum in g; for each term. We have
implemented several methods to study the impact of these
communication requirements. In the N-to-1 method, every
processor computes its local values of gf; and sends those
to processor 0, which sums the values and broadcasts the
results back to every processor. The sums for g; are then
computed in a similar fashion. In the N-to-N method, gf;
and g; are first computed locally and then results are broad-
cast to all other processors for computing the global values.
In both methods, there is the option to broadcast the locally
computed values using either dense or sparse vectors. Once
the local and global term weights are computed, the SCALE
DIMENSION filter then applies these weights to the matrix.

3.5 Singular Value Decomposition

To compute the SVD of the weighted term-document ma-
trix, A, ParaText wraps the distributed block Krylov Schur
method from the Anasazi package of the Trilinos solver li-
brary [1]. Using shallow copies of data into the sparse matrix
class in Trilinos, we avoid data replication. The rank-k trun-
cated SVD of A is computed as A ~ UkEkaT, where Uy,
>k, and Vj, are matrices containing the left singular vectors,
singular values, and right singular vectors, respectively.

3.6 Corpus Analysis

Document Similarities. An important application of text
modeling in general and LSA in particular [3] is determina-
tion of the topical or conceptual relationships between doc-
uments in a large collection. To model these relationships,
pairwise document similarity or distance measures are often
computed. In ParaText, document similarities are computed
as the cosine values between scaled LSA document vectors
(in V&xXg). Thus, the similarity between documents i and
j are computed as (Vi, V;)/(|[Vill [|V;]]), where (-,-) is the
standard inner product and VZ is the ith row of V2.

4. RESULTS

Computing Environment. The system we used for testing
is comprised of 256 compute nodes, each with a Dual 3.6
GHz Intel EM64T processor and 6 GB RAM. The system’s
high-speed message passing fabric is Infiniband, and the file
system is Lustre with a bandwidth of 15 GB/second.

Data. The data used in the experiments presented here con-
sist of a subset of HTML documents in the 2007 Spock Chal-
lenge test set (http://challenge.spock.com/). For experi-
ments involving 64 processors, n = 2458 and m = 669940

(0.12% matrix density); for those on 512 processors, n =
45945 and m = 4440327 (0.017% matrix density) were used.
Note that this decrease in matrix density for more docu-
ments is typical in text analysis.

Strong Scaling Studies. Figure 1 presents the results of
strong scaling studies using 64 processors for the filters with
multiple implementations. The plots all show mean CPU
times (with error bars denoting standard error) over 3 runs
as a function of the number of processors.

There are significant differences in the document partition-
ing methods (Fig. 1a), where partitioning by Documents ap-
pears the most scalable. Also the N-to-N methods appear

Documents
Bytes
Thrash

CPUTime

24 8 16 32 B4
Number of Processors

(a)

Binary Tree
MapReduce
N-To-1
N-To-N
Round Robin

CPU Time

24 8 16 32 64
Number of Processors

(b)

Global
GlobalLocal

CPU Time
3.

24 8 16 32 64
Number of Processors

(c)

N-to-1 Dense
N-to-N Dense
N-to-1 Sparse

CPU Time

24 8 16 32 64
Number of Processors

(d)

Figure 1: Strong scaling studies for methods associ-
ated with (a) document partitioning, (b) term dic-
tionary creation, (c) frequency matrix creation and
(d) entropy weighting.



to perform slightly (but not statistically significantly) bet-
ter than the N-to-1 methods (Figs. 1b and 1d), even though
the former methods require more overall communication. In
terms of sizes of packets being communicated, using dense
over sparse arrays in the ENTROPY WEIGHTING filter ap-
pears better for fewer processors (Fig. 1d). However, as the
number of processors increases (and thus the local term dic-
tionaries become more sparse due to fewer documents on
each processor), the sparse data passing has potential for
improved performance (as demonstrated by the trajectory
of improvement in the figure). Since MapReduce for term
dictionary creation seems promising as the number of pro-
cessors increases (Fig. 1b), we plan to explore additional
use of MapReduce in future versions of ParaText where ap-
propriate. Finally, caching of local information reduces the
overall costs associated with distributed term dictionary cre-
ation (Fig. 1c), and we will be investigating more use of this
throughout the ParaText pipeline.

Figure 2 presents the results of strong scaling studies for all
pipeline filters. Figure 2a illustrates that for the larger prob-
lem using 512 processors, most of the filters requiring little
or no inter-processor communication achieve strong scala-
bility as expected, although improvement is still possible for
the document ingestion and term document matrix creation.
For the filters requiring significant inter-processor commu-
nication, we see that more work is needed to achieve use-
ful speedups as we increase the number of processors (Fig-
ure 2b). We leave this as future work.

Document Ingestion
Text Extraction
Tokenizer

Token Length
N-Gram Extraction
Case Folding
Token Value

- Term Doc Matrix

- Log Weighting

- Scale Dimension

CPU Time

162 64 128 256 512
Number of Processors

Term Dictionary
Entropy Weighting
Trilinos SVD

CPU Time

24 8 16 32 64
Number of Processors

(b)

Figure 2: Strong scaling studies for the ParaText
pipeline illustrating performance of filters with (a)
little or no inter-processor communication and (b)
significant inter-processor communication.

S.  CONCLUSIONS

We have presented the ParaText system, an end-to-end pro-
cess for scalable distributed memory analysis of large doc-
ument collections. Through strong scaling studies, we have

illustrated that there are significant challenges associated
with LSA scalability and identified several areas for im-
provement in document ingestion, term-dictionary creation
(e.g., using distributed merge sort), and matrix computa-
tions (e.g., tuned matrix vector products).

6. ACKNOWLEDGMENTS

This work was funded by the Laboratory Directed Research
& Development (LDRD) program at Sandia National Lab-
oratories, a multi-program laboratory operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed Mar-
tin company, for the U.S. Department of Energy’s National
Nuclear Security Administration under contract DE-AC04-
94AL85000.

7. REFERENCES

[1] C. G. Baker, U. L. Hetmaniuk, R. B. Lehoucq, and
H. K. Thornquist. Anasazi software for the numerical
solution of large-scale eigenvalue problems. ACM
TOMS, 36(3):13:1-13:23, 2009.

[2] M. W. Berry and D. I. Martin. Parallel SVD for
scalable information retrieval. In Proc. Intl. Workshop
on Parallel Matrixz Algorithms and Applications,
Neuchatel, Switzerland, 2000.

[3] P. Crossno, D. Dunlavy, and T. Shead. LSAView: A
tool for visual exploration of latent semantic modeling.
In Proc. IEEE VAST, 2009.

[4] S. T. Dumais. Improving the retrieval of information
from external sources. Behavior Research Methods,
Instruments, € Computers, 23(2):229-236, 1991.

[5] M. T. Egner, M. Lorch, and E. Biddle. Uima grid:
Distributed large-scale text analysis. In Proc. of the
7th IEEE International Symposium on Cluster
Computing and the Grid, pages 317-326, Washington,
DC, USA, 2007. IEEE Computer Society.

[6] R. T. Fielding and R. N. Taylor. Principled design of
the modern web architecture. ACM TOIT,
2(2):115-150, 2002.

[7] M. Krishnan, S. Bohn, W. Cowley, and J. Crow,
V.and Nieplocha. Scalable visual analytics of massive
textual datasets. In Parallel and Distributed
Processing Symposium, 2007. IPDPS 2007. IEEE
International, pages 1-10, 26-30 March 2007.

S. Plimpton and K. Devine. MapReduce-MPI Library.

http://www.sandia.gov/“sjplimp/mapreduce.html.

[9] G. Salton, editor. The SMART Retrieval System:
Ezperiments in Automatic Document Processing.
Prentice-Hall, 1971.

[10] The Unicode Consortium. The Unicode Standard,
Version 5.0 (5th Edition). Addison-Wesley
Professional, 2006.

[11] S. Vigna. Distributed, large-scale latent semantic
analysis by index interpolation. In Proc. InfoScale,
pages 1-10, 2008.

[12] D. Widdows and K. Ferraro. Semantic vectors: a
scalable open source package and online technology
management application. In Proc. LREC, 2008.

[13] B. Wylie and J. Baumes. A unified toolkit for
information and scientific visualization. In SPIE, 2009.

[14] J. Yan, S. Yan, N. Liu, and Z. Chen. Straightforward
feature selection for scalable latent semantic indexing.
In Proc. SDM, pages 1159-1170, 2009.

8


http://www.sandia.gov/~sjplimp/mapreduce.html

	Introduction
	Related Work
	The ParaText System
	Text Extraction
	Term Dictionary Creation
	Term Document Matrix Creation
	Term Weighting
	Singular Value Decomposition
	Corpus Analysis

	Results
	Conclusions
	Acknowledgments
	References

